Post

Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images

  • 论文名称: Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images
  • Link: https://arxiv.org/abs/2106.10605
  • Published in: IEEE Transactions on Geoscience and Remote Sensing 2022
  • Type: Pretrain
  • Code/Project: https://github.com/GeoX-Lab/G-RSIM
  • 备注: 自监督,对比学习
  • Backbone: CNN
  • Backbone 1: CNN
  • 下游任务: Semantic Segmentation
  • 下游任务 1: Semantic Segmentation
  • Short Summary: 基于对比学习对于像素级别的任务适配不好,改论文提出了一种基于全局和局部对比学习的方法,以更好的适应像素级任务
This post is licensed under CC BY 4.0 by the author.