Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images
- 论文名称: Global and Local Contrastive Self-Supervised Learning for Semantic Segmentation of HR Remote Sensing Images
- Link: https://arxiv.org/abs/2106.10605
- Published in: IEEE Transactions on Geoscience and Remote Sensing 2022
- Type: Pretrain
- Code/Project: https://github.com/GeoX-Lab/G-RSIM
- 备注: 自监督,对比学习
- Backbone: CNN
- Backbone 1: CNN
- 下游任务: Semantic Segmentation
- 下游任务 1: Semantic Segmentation
- Short Summary: 基于对比学习对于像素级别的任务适配不好,改论文提出了一种基于全局和局部对比学习的方法,以更好的适应像素级任务
This post is licensed under CC BY 4.0 by the author.