Post

Predicting Gradient is Better Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture

  • 论文名称: Predicting Gradient is Better: Exploring Self-Supervised Learning for SAR ATR with a Joint-Embedding Predictive Architecture
  • Link: https://arxiv.org/abs/2311.15153v4
  • Published in: Arxiv 2023
  • Type: Pretrain
  • Code/Project: https://github.com/waterdisappear/SAR-JEPA
  • 备注: 自监督,类似JEPA的框架,固定student生成梯度特征
  • 数据类型: SAR
  • Backbone: ViT
  • 下游任务: Target Recognition
  • Short Summary: 发现像素采样不适用于SAR图像,因为SAR图像的单个像素包含乘性噪声。因此更倾向于使用局部补丁进行遮挡,而不是整个图像或像素级别。工作旨在通过局部补丁在目标层次上挖掘语义信息,而不是场景层次,工作发现梯度比率比HOG的差分梯度在乘性斑点噪声下更适合目标形状信息提取。
This post is licensed under CC BY 4.0 by the author.