Towards Geospatial Foundation Models via Continual Pretraining
- 论文名称: Towards Geospatial Foundation Models via Continual Pretraining
- Link: https://arxiv.org/abs/2302.04476
- Published in: ICCV 2023
- Type: Pretrain
- Code/Project: https://github.com/mmendiet/GFM
- 备注: 数据集,自监督掩码+蒸馏,持续预训练
- Backbone: Swin Transformer
- Backbone 1: Swin transformer
- 下游任务: Change Detection, Classification, Semantic Segmentation, Super-resolution
- 下游任务 1: change detection, classification, multi-label classification, semantic segmentation, and super-resolution
- Short Summary: 改论文注意到了地理空间数据集的多样性对MIM预训练十分重要。为了增加纹理细节,我们确保了各种地面采样距离(GSD),包括比Sentinel-2(GSD为10米)高得多分辨率的图像。此外,选择的标签数据集涵盖了广泛的通用遥感场景类,确保样本间的视觉多样性。通过蒸馏的方式让学生网络学习到ImageNet pretrain的特征。
This post is licensed under CC BY 4.0 by the author.